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Abstract

Sensing surroundings is ubiquitous and effortless to hu-
mans: It takes a single glance to extract the spatial configu-
ration of objects and the free space from the scene. To help
machine vision with spatial understanding capabilities, we
introduce the View Parsing Network (VPN) for cross-view
semantic segmentation. In this framework, the first-view
observations are parsed into a top-down-view semantic map
indicating precise object locations. VPN contains a view
transformer module, designed to aggregate the first-view
observations taken from multiple angles and modalities, in
order to draw a bird-view semantic map. We evaluate the
VPN framework for cross-view segmentation on two types
of environments, indoors and driving-traffic scenes. Experi-
mental results show that our model accurately predicts the
top-down-view semantic mask of the visible objects from
the first-view observations, as well as infer the location of
contextually-relevant objects even if they are invisible1.

1. Introduction

Recent progress in deep learning, including deep convo-
lutional neural networks, has enabled machine vision to seg-
ment an image precisely into meaningful regions and objects
[47, 25]. However, a deeper awareness of the surroundings
requires better sensing of the spatial configuration, such as
the coordinates and relative positions of the nearby objects,
in a space [7, 2, 5, 6]. So far, we can mostly rely on 3D
vision to extract this information. However, collecting 3D
vision data is costly in time and resources, involving imag-
ing devices such as LiDAR [13], 3D cameras [8, 40], or the
extensive scanning of RGB-D cameras [11, 33, 32, 42, 34],
as well as the need for a large amount of manual human
annotations.

In this work, we explore a new image-based scene un-
derstanding task, the Cross-View Semantic Segmentation.
As shown in Figure 1, the goal of the cross-view semantic
segmentation task is to predict the top-down-view semantic

1Code and demo video are available at xxxx
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Figure 1: Top-down-view semantics are predicted from the
first-view real-world observation in the cross-view semantic
segmentation. We experiment our model in two common
scenarios:(a) Indoor-room scene. (b) Driving-traffic scene.

map from a set of first-view observations. The resulting
top-down-view semantic map naturally outlines the spatial
layout of surrounding objects as well as their semantic mean-
ings. Such a light spatial representation facilitates an agent
to represent its surroundings in a more efficient and more
exhaustive manner.

One challenge in cross-view semantic segmentation is
the difficulty of collecting the top-down-view semantic an-
notations. Recently, realistic simulation environments such
as House3D [38] and Matterport3D [8, 41] have been pro-
posed for training navigation agents. In these environments,
cameras can be placed at any location in the simulated scene
while the observations in multiple modalities such as RGB
images, semantic masks, and depth maps can be extracted.
Thus, leveraging simulation environments is an alternative
way to acquire cross-view annotated data. Although there
is a domain gap between simulated scenes and real-world
scenes, the generalization ability of the trained models across
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domains can be improved using abstract representations such
as depth map and semantic mask, or adopting domain adap-
tation techniques [37, 18].

This work explores a novel framework for cross-view
semantic segmentation using simulation environments, and
then transfers them to real-world environments. In the View
Parsing Network (VPN), a view transformer module aggre-
gates the information from multiple first-view observations
such as the RGB images, depth maps, and semantic masks.
It further outputs the top-down-view semantic map with the
spatial layout of objects. We evaluate the proposed mod-
els on indoor scenes from House3D environment [38] and
on outdoor driving scenes from CARLA environment [12].
Experiments show that we achieve 85.0% pixel accuracy
and 41.0% Mean IoU on synthetic data of House3D as well
as 84.7% pixel accuracy and 33.2% Mean IoU in CARLA
environment. We also provide the domain adaptation re-
sults on Matterport3D dataset [8] in the Gibson environment
[41] and nuScene dataset 2. When transferred to real-world
scenes, our VPN can still effectively represent the spatial
configuration and localize the surrounding objects.

Our main contributions are as follows: (1) We introduce
the cross-view semantic segmentation task with a View Pars-
ing Network (VPN) to address it. (2) We narrow the gap
between synthetic data and real data by transferring the VPN
through abstract representation and domain adaptation tech-
niques. (3) We demonstrate that the top-down-view maps
provided by the VPN improve the surrounding exploration.

2. Related Work

Semantic segmentation. The semantic segmentation
task generates a pixel-wise semantic map to label each pixel
of the input image. Deep learning networks for semantic
segmentation, such as the FCN [25], SegNet [1] and PSPnet
[46] are designed to segment the image pixel-wise within
one-view. Image datasets with pixel-wise annotations such
as CityScape [10] and ADE20K [47] are used for the training
of semantic segmentation networks. Note these pixel-wise
annotated datasets require a large amount of annotation. In
our cross-view segmentation task, we leverage the coupled
cross-view annotation data pulled from the simulated envi-
ronments for free as training data, and explore the corre-
sponding cross-view segmentation network architectures.

Layout estimation and view synthesis. Estimating lay-
out has been an active topic of research (i.e. room layout
estimation [50, 22, 43, 19, 16], free space estimation [17]).
Most of the previous methods use annotations of the layout or
geometric constraints for the estimation, while our proposed
framework estimates the top-down-view map directly from
the image, without the intermediate step of estimating the
3D structure of the scene. On the other hand, view synthesis

2https://www.nuscenes.org

has been explored in many works [23, 48, 45, 30, 44, 20].
For example, [45, 30] describes a method to learn the trans-
formation between ground and aerial imagery. [20, 44] syn-
thesizes cross-views of objects and [48, 23] synthesizes driv-
ing scenes. View synthesis focuses on generating realistic
cross-view images while our cross-view segmentation aims
at parsing semantics across different views.

Simulated environment learning. Given that current
graphics simulation engines can render realistic scenes,
recognition algorithms can be trained on data pulled from
simulation engines (i.e. for visual navigation models [14,
49, 41, 9, 21]). Several techniques have been proposed to
address the domain adaptation issue [39, 3, 31, 36, 24, 26, 4],
when models trained with simulated images are transferred
to real scenes [18]. Rather than working on the task of
visual navigation directly, our project aims at parsing the
top-down-view semantic map from first-view observations.
The resulting top-down-view map will further facilitate the
visual navigation and path planning.

3. Cross-View Semantic Segmentation

The task of parsing top-down-view semantics from scene
images is much less explored than object detection and seg-
mentation. The resulting top-down-view semantic map indi-
cates the spatial layout and relations among objects, which is
crucial for scene understanding and mobile robot navigation.

3.1. Problem Statement

The objective of cross-view semantic segmentation is as
follows: given the first-view observations as input, the algo-
rithm must generate the top-down-view semantic map. The
top-down-view semantic map not only contains the semantic
labels but also tells the approximate coordinate information
of each object in the scene. The input first-view observations
can be a single image or a set of images captured at different
angles from the same spatial location. In our basic setting,
the network predicts the semantic map at local spatial posi-
tions. We are also integrating multiple local semantic maps
into a semantic floor map for further applications.

Note that there is a fundamental difference between the
cross-view segmentation and the visual SLAM [28, 29].
While both estimate the spatial configuration of an environ-
ment, our VPN aims at parsing the top-down-view semantic
map rather than the full 3D reconstruction of the scene tar-
geted by visual SLAM. Combining the semantic prediction
with visual SLAM will be one possible extension of this
work.

3.2. Framework of the View Parsing Network

Figure 2 illustrates the View Parsing Network. First-view
observations are fed into the encoder to extract view feature
maps. Each view feature map is transformed and aggregated
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Figure 2: Framework of the View Parsing Network for cross-view semantic segmentation.

in the view transformer module, and then the aggregated
feature map is decoded into a top-down-view semantic map.

Pipeline. As shown in Figure 2, from one spatial position
of the floor map, we first sample N first-view observations
(here N = 4 in Figure 2) in even angles so that all-around in-
formation is captured. Then, the first-view observations are
encoded by a shared-weight encoder. This CNN-based en-
coder outputs a spatial feature map for each view. Then each
feature map is fed into the View Transformer Module. After
transforming these view feature maps from first-view space
into the top-down-view feature space, we aggregate these
feature maps into the top-down-view feature map. Finally,
we decode it into a spatial map to predict the top-down-view
semantic mask using a convolutional decoder.

View transformer. Although the encoder-decoder struc-
ture is a standard method in semantic segmentation networks
[25, 46, 47, 1], our experiment shows that it performs poorly
in the cross-view semantic segmentation task. While in the
standard semantic segmentation the receptive field of the
output spatial feature map is roughly aligned with the in-
put spatial feature map, it is not the case for the cross-view
semantic segmentation where the features are not spatially
aligned. Ideally, the top-down-view map should take all
input first-view feature maps into consideration, not just at a
local receptive field region.

We designed the view transformer to learn the dependen-
cies across all the spatial locations between the first-view
feature map and the top-down-view feature map. This mod-
ule will not change the shape of the feature map, so it can
be plugged into any existing encoder-decoder type of net-
work architecture for semantic segmentation. The diagram
at the right corner of Figure 2 illustrates the transforma-
tion: The first-view feature map is first flattened while the
channel dimension remains unchanged. Then we use the
fully-connected layers to link the flattened first-view feature
map and the flattened top-down-view feature map so that the
receptive fields on the top-down-view feature map can cover
the whole first-view feature map. Finally, the top-down-view

feature map is reshaped back. Each view angle has its own
view transformer module to transform the corresponding
view observation. To aggregate the features from different
view angles, we simply sum them up as

T =

N∑
n=1

Vn(M
n), (1)

T is the top-down-view output feature, N is the number
of input first-view angles, Mn is the feature map of nth-
angle first-view observation and Vn is the corresponding
view transformer submodule for each view angle.

Input observation. We train and evaluate our models
with the input first-view observations in three modalities:
RGB image, depth map, and semantic mask. RGB image
contains the appearance information of the scene including
texture, color, and illumination. Depth map contains the
geometry information of the objects to the camera and their
shapes. Semantic mask provides the semantic information
of each pixel. In practice, it is plausible to integrate the
observations from multiple modalities when we deploy the
algorithm to the actual mobile robot: both RGB image and
depth map can be directly obtained by an RGB-D camera,
while semantic masks can be predicted by existing semantic
segmentation networks from the RGB images [47].

3.3. Sim-to-real Adaptation

To transfer the model trained in a simulation environment
to a real-world environment, we use an adversarial training
scheme to adapt it from synthetic source domain to the real-
world target domain. The pipeline is mainly adopted from
[37]. Here we have a view parsing network G to generate
the top-down-view prediction P and use a discriminator D
to discriminate if P is generated from source domain. The
generator G is initialized by the weights of a well-trained
VPN in synthetic environment. We first forward a group of
input images from the source domain {Is} to G and optimize
it with a normal segmentation loss Lseg. Then we use G to
extract the feature map Fi (before the softmax layer) of the



Table 1: Result on House3D cross-view dataset with different modalities and view numbers.

RGB Semantic Mask Depth

Networks Pixel Acc. Mean IoU Pixel Acc. Mean IoU Pixel Acc. Mean IoU

1-view VPN 55.8% 6.5% 59.6% 13.2% 56.9% 7.6%

2-view VPN 70.1% 14.8% 75.7% 25.9% 70.2% 15.6%

4-view VPN 80.3% 27.7% 85.0% 40.6% 81.2% 27.6%

8-view VPN 81.2% 28.5% 84.7% 41.0% 82.1% 29.9%

(a) 1 view (b) 2 views (c) 4 views (d) 8 views

Ground truth

1-view 2-view 4-view 8-view

Figure 3: Cross-view segmentation result improves when the VPN receives more RGB views as input. The first column shows
the input first-view RGB images at 8 evenly views. Other columns show the segmentation results by using 1-view, 2-view,
4-view and 8-view VPNs along with the ground truth respectively.

images from the target domain {It} and use discriminator
to distinguish whether Ft is from the source domain. Here
G is updated by the gradients propagated from D, while
the weights of D is fixed, which encourages G to unify the
feature distributions of source domain and target domain.
Lastly, we optimize the discriminator by training D to rec-
ognize which domain the feature output is from. The loss
function to optimize G can be written as follows:

L({Is}, {It}) = Lseg({Is}) + λadvLadv({It}), (2)

where the Lseg is a normal cross-entropy loss for semantic
segmentation, and Ladv is designed to train the G and fool
the discriminator D. The loss function for the discriminator
training Ld is a cross-entropy loss for binary classification
(source & target). Details can be referred to [37].

4. Experiments
We first go through the network configuration in Sec-

tion 4.1 and the overview of the cross-view segmentation
datasets in Section 4.2. Then we show the performance of
VPN on synthetic data of the House3D environment in Sec-
tion 4.3. Finally, we demonstrate that our model trained on
synthetic data can generalize to real-world data.

4.1. Network configuration

View encoder and decoder. To balance efficiency and
performance, we use ResNet-18 [15] as the encoder. We
remove the last Residual Block and the Average Pool layer
so that the resolution of the encoding feature map remains
large, which better preserves the details of the view. We
employ the pyramid pooling module used in the standard
scene parsing [46] as the decoder.

View transformer. We use a two-layers MLP as the base-
line of the view transformer. Input and output dimensions of
the view transformer are both HIWI , where HI and WI are
respectively the height and width of the intermediate feature
map. We flatten the intermediate feature map to CI ×WIHI

before we input and reshape it back to CI ×WI ×HI af-
ter that. This simple design works well in practice, more
sophisticated designs will be explored in future work.

Generator & Discriminator. For the generator, we use
the architecture of the 4-view view parsing network. For the
discriminator, we adopt the same architecture in [37]. It has
5 convolution layers, each of which is followed by a leaky
ReLU [27] with the parameter 0.2 (except the last layer).
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Figure 4: Cross-view segmentation on House3D using the input modality of RGB image, depth map and semantic mask
respectively. Here the number of input views is fixed as 4. Ground truth is shown on the right.

Input RGB Input RGBPrediction Ground truth Prediction Ground truth

Figure 5: Qualitative cross-view segmentation results of a 6-view RGB VPN model trained on CARLA cross-view dataset.
We train such a model in order to match the data modality and format of nuScenes dataset.

4.2. Benchmarks

Here we introduce two synthetic datasets, House3D
cross-view dataset and Carla cross-view dataset, and two
real-world datasets, Matterport3D cross-view dataset and
nuScenes dataset. We train our VPNs on synthetic datasets
and transfer them to the real-world datasets.

House3D cross-view dataset. We build a synthetic
indoor-room dataset from House3D environment [38].
House3D is an interactive graphic environment built on top
of the 3D indoor scenes of SUNCG dataset [35]. In our
experiments, we select 410 scenes in House3D to construct
a dataset with cross-view data annotations. We refer to this
dataset as House3D Cross-view Dataset. Each data pair
contains 8 first-view input images captured from 8 different
orientations at a spatial location of a scene. Additionally,
each data pair comes with the top-down-view semantic mask
captured in the ceiling-level height. To be complete, we store
the input image with multiple modalities including the RGB
images, depth maps, and semantic masks. In each scene,
we sample the data with a 0.5-meter stride over the floor
map. Here each scene is an independent house with different
rooms and objects. We split the dataset into training and val-
idation set based on scenes. The training set contains 143k
data pairs from 342 scenes while the validation set contains
20k data pairs from 68 scenes.

Matterport3D cross-view dataset. We also construct a
real-world indoor-room dataset called Matterport3D cross-
view dataset. Matterport3D is a large-scale RGB-D dataset

with 10.8k real panoramic views from 194k RGB-D im-
ages of 90 real indoor scenes. We use the Gibson Envi-
ronment [41] to render the panorama data and the top-down
semantic masks. Gibson is a virtual environment which takes
a sparse set of RGB-D panoramas in the input and renders a
panorama from an arbitrary novel viewpoint. Additionally, it
uses a technique called Goggles to eliminate the domain gap
between the real scanned images and the rendered images.
We choose 6 scenes of Matterport3D to extract the real-world
cross-view data. The final benchmark dataset contains 4540
data pairs in total.

NuScenes dataset. NuScenes is a public large-scale
dataset for autonomous driving. Each data sample contains
first-view images from 6 directions (Front, Front-right, Back-
right, Back, Back-left, Front-left). We select 17k data sam-
ples without top-down-view mask for unsupervised training.

CARLA cross-view dataset. To match the data compo-
sition in nuScenes, we use CARLA simulator to extract data.
CARLA is a popular open-source simulator for training and
evaluation of autonomous driving. To build the synthetic
source domain dataset, we extract 28, 000 data pairs with top-
down-view annotations and different input modalities from
14 driving episodes. Each data pair contains 6 first-view
input RGB images captured from 6 directions.

4.3. Evaluation

We present VPN performances on the synthetic data of
House3D cross-view and CARLA cross-view datasets.

Metrics. We report the results of cross-view semantic
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Figure 6: Predicting invisible objects: In (a), although the
input semantic masks do not indicate that there is a table
beside the chair, our model predicts it on the top-down-view
mask based on the prior that tables and chairs usually appear
together. In (b), in the Back view input mask, only a very
small part of the second door can be observed, our model
segments the door fully in the top-down-view prediction
based on the shape prior of the door. Here the prediction is
done by 2-view VPN with semantic input on the left.

Table 2: Ablation study of our VPN. We use Pixel Accuracy
and Mean IoU to evaluate the results under two different
view conditions.

Modality Baseline VPN
1-view Pix. Acc. Mean IoU Pix. Acc. Mean IoU

RGB 53.9% 6.3% 55.8% 6.5%

Depth 55.7% 6.5% 56.9% 7.6%

Semantic 57.4% 10.0% 59.6% 13.2%

8-view Pix. Acc. Mean IoU Pix. Acc. Mean IoU

RGB 60.5% 8.7% 81.2% 28.5%

Depth 43.8% 2.5% 82.1% 29.9%

Semantic 47.6% 6.5% 84.7% 41.0%

segmentation using two commonly used metrics in semantic
segmentation: Pixel accuracy which characterizes the pro-
portion of correctly classified pixels, and Mean IoU which
indicates the intersection-and-union between the predicted
and ground truth pixels.

Results of VPNs. The quantitative segmentation results
on our House3D cross-view dataset are listed in Table 1
with different modalities and different numbers of views.
As the VPN receives more views, the segmentation results
improve rapidly. Noticeably, taking semantic masks as input
results to the best performance. We plot some qualitative
segmentation results by our VPNs in Figure 3, Figure 4 and

Prediction Ground truth Prediction Ground truth

3D Scene model 3D Scene model

Pixel Acc. : 84.9%   Mean IoU : 35.1% Pixel Acc. : 86.5%   Mean IoU : 39.3%

Figure 7: Integrating the local top-down-view semantic maps
into a global semantic floor map for two scenes. The ground
truth semantic floor map is generated from the ground truth
top-down-view semantic maps. As a reference, the 3D scene
model is also shown below.

Figure 5. In Figure 3, we keep the input modality fixed as an
RGB image and vary the number of input views. We can see
that, as the number of views increases, the segmentations
are refined to capture more detail. In Figure 4, we keep the
number of input views fixed as 4, while varying the input
modality. In Figure 5, we put some results of a 6-view RGB-
input model trained in CARLA simulator, which achieves
the performance of 84.7% Pixel Acc. and 33.2% Mean
IoU. We further show interesting cases in Figure 6 where
we find that our model has learned to infer some invisible
objects.

Importance of View Transformer module. We further
compare with the baseline networks in Table 2 to show the
importance of the view transformer module in aggregating
the information from multiple views. The baseline is a clas-
sic encoder-decoder architecture used in the standard seman-
tic segmentation, in which the encoder and the decoder are
same as our VPN. We train the baseline model with input
view number as 1 and 8 respectively. We simply sum up
the feature maps from different views and then feed it to the
decoder. We can see that our VPN outperforms the baseline
and, in some multi-view cases, the baseline model does even
worse than single-view one due to the bad fusion strategy.

Generating the semantic floor maps. Our VPN is able
to integrate the local top-down-view maps into a semantic
floor map. Since the ray spread into the top-down-view
camera is not in parallel, we can not splice them directly.
Thus we crop the central area of the predicted top-down-
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Figure 8: Qualitative results of sim-to-real adaptation. We can see that by exploiting domain adaptation techniques, the
performance of our model in real-world data is significantly improved, comparing the sim-to-real prediction to the source
prediction without domain adaptation. We can see that in driving-traffic scenes, our model is able to estimate the shape of road
and roughly localize the surrounding vehicles. In indoor-room scenes, our model can effectively sense the spatial configuration
of room, meanwhile, recognize the categories and locations of surrounding objects.

view map so that we can approximately assume that the
ray emitted from this area is in parallel. We integrate the
top-down-view maps in a max-pooling manner according to
the predicted confidence map. Some qualitative results are
shown in Figure 7. The integrated semantic floor map shows
the spatial layout of all the objects in the environment.

Results of sim-to-real adaptation. After we train and
test our VPNs in simulation environment, we transfer our
model to the real-world data. In driving-traffic scenes, we
first train a 6-view RGB VPN model in CARLA simula-
tor and then transfer it to nuScenes dataset by using unsu-
pervised domain adaptation techniques as depicted in Sec-
tion 3.3. In indoor-room scenes, we train our model in
House3D environment and transfer to Matterport3D dataset.
Since the data distribution gap between the RGB images of
House3D and Matterport3D is large, we first narrow this gap

by exploiting some abstraction techniques. We first trans-
form the RGB images of these two datasets into the semantic
domain by utilizing the semantic mask, based on which we
further deploy adversarial training (in Section 3.3) to adapt
the output feature. Since there is no top-down-view ground
truth in nuScenes dataset and the quality of semantic annota-
tion of the top-down-view images in Matterport3D can not
support to evaluate the model performance appropriately, we
provide the qualitative results in Figure 8.

5. Application to Surrounding Exploration

To evaluate the effectiveness of the top-down-view mask
generated from VPN for surrounding sensing, we test on
a visual navigation task, max-coverage surrounding explo-
ration. The task objective is to explore as much unknown



free space as possible within a certain number of steps in
a new environment. We assume that the localization of the
agent is given at each time step and each action is executed
by the agent without noise.

5.1. Exploration with top-down-view map.

Humans exploring a space will head to space which they
have not visited. This intuition reflects that exploration re-
quires the agent to identify free space as well as remember
which areas it has not visited yet. To achieve this goal, we
make the agent able to identify the free space by training it
to predict the top-down-view free-space map. Along with
the state map which records the already-executed action
sequence, the agent can remember the unvisited area.

Top-down-view free-space map. We train VPN to pre-
dict Top-down-view free-space map. Different from seman-
tic map, free-space map has only two categories, obstacle
and free space, which are denoted by 0, 1 respectively.

State map. Due to the ideal assumption made above, by
memorizing the previous actions it has executed, the agent
can easily build the state map which contains the information
of the already-visited positions. We label the unvisited pixels
as 0 and the already-visited pixels as 1 on the state map.

Exploration algorithm. We detail the navigation policy
decision algorithm in Algorithm 1. At each time step t, we
make the decision at and update the agent with the next
top-down-view free-space map Tt+1 and state map St+1. In
both the top-down-view free-space map and the state map,
we assume that the agent is always at the center of the map.

Algorithm 1 Exploration policy decision
Input: A top-down-view free-space map Tt and a state map
St at time step t, where Tt, St ∈ {0, 1}L×L.
Output: Policy action at, where at ∈ {Forward, Back,

Left-forward, Right-forward, Done}.
1: Ut ← Tt

⋂
¬St; at ← Done; ds ← +∞

2: Dt ← computeDistMap(Ut)
3: for a in {Forward,Back, Left-forward,Right-
forward} do

4: d = execute(a)
5: if ds > d then
6: ds ← d; at ← a

computeDistMap(): Compute the shortest distance of
each map pixel to the unvisited free-space region.
execute(): Return the shortest distance of the pixel to which
the agent transit if execute the action a.

5.2. Result and comparison

We compare the following baselines for max-coverage ex-
ploration. Random walk: A random walk agent randomly
chooses one action at each time step. Top-down-view navi-
gation with ground truth: By planning on the ground truth

Start point End point

(b) IL w/o top-view

Coverage area: 632

(a) Random walk 

Coverage area: 326

(c) Top-view navigation

Coverage area: 991

(d) Top-view navigation with GT

Coverage area: 1163

Figure 9: Examples of the max-coverage exploration. Each
method has the same start point. The trajectory are shown
and the explored area are lighted up.

top-down-view free-space map with Algorithm 1, we can
obtain the upper-bound performance of our method. Imita-
tion learning without top-down-view: A policy network
learns to imitate the expert exploration trajectories given the
first-view observations. Details of implementation can be
referred to supplementary materials.

Table 3: Comparison on max-coverage exploration.

Method Coverage Area

Random walk 260.3 ± 82.7

IL w/o top-down-view 443.8 ± 340.6

Top-down-view navigation 673.8 ± 349.8

Top-down-view navigation with GT 1070.8±326.2

We run the algorithm directly on our predicted top-down-
view map. For testing all the methods, we start the episode
by initializing the state maps from zero, indicating that all
free space is yet to be visited. Coverage Area is defined
to measure the max-coverage exploration performance. We
randomly choose 100 starting points on a scene map. For
each starting point, we let the agent explore the space for
300 steps and compute the coverage area. Then final results
are obtained by averaging the coverage area of these 100
episodes. Table 3 plots the exploration result for different
methods and Figure 9 shows some sample trajectories. We
can see that, equipped with the predicted top-down-view
map from our VPN, the agent can act almost like an expert.

6. Conclusion
We proposed the View Parsing Network (VPN) for cross-

view semantic segmentation. We transferred our model to
real-scenes by abstract representation as well as domain
adaptation. We showed that VPN can generalize to sense sur-
roundings both in simulation and real-world environments.
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